Bonfring International Journal of Data Mining

Impact Factor: 0.245 | International Scientific Indexing(ISI) calculate based on International Citation Report(ICR)


Comparison of Estimators of Gumbel Distribution for Modelling Wind Speed Data

N. Vivekanandan and Dr. S.K. Roy


Abstract:

Estimation of extreme wind speed potential at a region is of importance while designing tall structures such as cooling towers, stacks, transmission line towers, etc. Assessment of wind speed in a region can expediently be carried out by probabilistic modelling of historic wind speed data using an appropriate extreme value distribution. This paper illustrates the use of five parameter estimation methods of Gumbel distribution for modelling Hourly Maximum Wind Speed (HMWS) data recorded at Delhi and Visakhapatnam regions. Goodness-of-Fit (GoF) tests involving Anderson-Darling and Kolmogorov-Smirnov are used for checking the adequacy of fitting of the method to the recorded data. Root Mean Square Error (RMSE) is used for selection of a suitable method for determination of estimators of Gumbel distribution for modelling HMWS data. The results of GoF tests and RMSE shows that order statistics approach is better suited for estimation of design wind speed for the regions under study.

Keywords: Anderson-Darling, Gumbel, Kolmogorov-Smirnov, Mean Square Error, Order Statistics, Wind Speed

Volume: 2 | Issue: 4

Pages: 11-15

Issue Date: December , 2012

DOI: 10.9756/BIJDM.10079

Full Text

Email

Password

 


This Journal is an Open Access Journal to Facilitate the Research Community